DETAILS

 

Title: Carbonyl sulfide hydrolysis in polar ice cores and the feasibility of recovering a paleoatmospheric history
Author: Nicewonger, M.R., Aydin, K.M., Saltzman, E.S., Fudge, T.J., Waddington, E.D. and Verhulst, K.R.
Periodical: American Geophysical Union, Fall Meeting 2012, abstract #C51D-0802
Abstract:

Carbonyl sulfide (COS) is the most abundant sulfur gas in the atmosphere with a current tropospheric mean level of 484 parts per trillion [Montzka et al., 2007]. The major sources of COS are biomass burning, oceanic emissions of COS, and the atmospheric oxidation of precursor sulfur compounds CS2 and DMS emitted from the oceans and soils. The major losses of atmospheric COS are uptake by vegetation and soil. The uptake of COS by terrestrial vegetation provides a link between the global budget of COS and the carbon cycle. We measured COS in polar ice cores from four Antarctic sites: Taylor Dome, Siple Dome, South Pole, and West Antarctic Ice Sheet Divide. The COS samples ranged in age from 0.2-42 ky BP. There are large differences between the measurements from the various sites during overlapping time periods. COS levels in ice from the warmer sites (Siple Dome and WAIS-D) are considerably lower than those from the colder sites (Taylor Dome and South Pole). This result suggests that the difference reflects COS loss to hydrolysis within the ice core bubbles. The kinetics of COS hydrolysis in aqueous solution have been studied, but there is no information about reaction rates in ice. A 1-dimensional heat and ice flow model was used to determine the temperature history for each ice core sample. Assuming a pseudo-first order Arrhenius rate equation for COS loss in ice, we can correct each ice core sample for post-depositional COS loss. The temperature histories are used with an objective minimization algorithm to determine the optimal kinetic parameters for COS loss to obtain agreement between ice core measurements from different sites. The results indicate that the ice core data from all sites can be reconciled with a single COS atmospheric history. The uncertainty in this history becomes large in warm ice at longer time scales. This study suggests that reconstructing paleoatmospheric COS will require measurements in ice cores from sites with cold surface temperatures and large ice sheet thickness.

Year: 2012